Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
Eur J Med Chem ; 269: 116305, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38518525

ABSTRACT

Inspired by our earlier findings regarding neuraminidase (NA) inhibitors interacting with 150-cavity or 430-cavity of NA, sixteen novel polyheterocyclic NA inhibitors with 1,3,4-oxadiazole thioetheramide as core backbone were designed and synthesized based on the lead compound ZINC13401480. Of the synthesized compounds, compound N5 targeting 150-cavity exerts the best inhibitory activity against the wild-type H5N1 NA, with IC50 value of 0.14 µM, which is superior to oseltamivir carboxylate (OSC) (IC50 = 0.31 µM). Compound N10 targeting 430-cavity exhibits the best activity against the H5N1-H274Y mutant NA. Although the activity of N10 is comparable to that of OSC for wild-type H5N1 inhibition, it is approximately 60-fold more potent than OSC against the H274Y mutant, suggesting that it is not easy for the virus to develop drug resistance and is attractive for drug development. N10 (EC50 = 0.11 µM) also exhibits excellent antiviral activity against H5N1, which is superior to the positive control OSC (EC50 = 1.47 µM). Molecular docking study shows that the occupation of aromatic fused rings and oxadiazole moiety at the active site and the extension of the substituted phenyl to the 150-cavity or 430-cavity make great contributions to the good potency of this series of polyheterocyclic NA inhibitors. Some advancements in the discovery of effective target-specific NA inhibitors in this study may offer some assistance in the development of more potent anti-influenza drugs.


Subject(s)
Influenza A Virus, H5N1 Subtype , Neuraminidase , Oseltamivir/analogs & derivatives , Molecular Docking Simulation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Oseltamivir/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Oxadiazoles/pharmacology , Drug Resistance, Viral
2.
Biochim Biophys Acta Biomembr ; 1866(3): 184273, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38211646

ABSTRACT

Oseltamivir belongs to the neuraminidase inhibitors, developed against the influenza virus, and registered under the trademark Tamiflu. Despite its long-term acquaintance, there is limited information in the literature about its physicochemical and structural properties in a lipid-water system. We present an experimentally determined partition coefficient with structural information on the interaction of oseltamivir with the model membrane, its possible location, and its effect on the membrane thermodynamics. The hydrophobic part of the lipid bilayer is affected to a moderate extent, which was proved by slight changes in thermal and structural properties. Hereby, interaction of oseltamivir with the phospholipid bilayer induces concentration dependent decrease of lateral pressure in the bilayer acyl chain region. Oseltamivir charges the bilayer surface positively, which results in the zeta potential increase and changes in anisotropic properties studied by the polarised light microscopy. At the highest oseltamivir concentrations studied, the multilamellar structure is extensively disturbed, likely due to electrostatic repulsion between the adjacent bilayers.


Subject(s)
Antiviral Agents , Oseltamivir , Oseltamivir/chemistry , Oseltamivir/pharmacology , Antiviral Agents/pharmacology , Lipid Bilayers/chemistry , Phospholipids , Phosphates
3.
J Comput Chem ; 45(5): 247-263, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37787086

ABSTRACT

At the beginning of the last century, multiple pandemics caused by influenza (flu) viruses severely impacted public health. Despite the development of vaccinations and antiviral medications to prevent and control impending flu outbreaks, unforeseen novel strains and continuously evolving old strains continue to represent a serious threat to human life. Therefore, the recently identified H10N7, for which not much data is available for rational structure-based drug design, needs to be further explored. Here, we investigated the structural dynamics of neuraminidase N7 upon binding of inhibitors, and the drug resistance mechanisms against the oseltamivir (OTV) and laninamivir (LNV) antivirals due to the crucial R292K mutation on the N7 using the computational microscope, molecular dynamics (MD) simulations. In this study, each system underwent long 2 × 1 µs MD simulations to answer the conformational changes and drug resistance mechanisms. These long time-scale dynamics simulations and free energy landscapes demonstrated that the mutant systems showed a high degree of conformational variation compared to their wildtype (WT) counterparts, and the LNV-bound mutant exhibited an extended 150-loop conformation. Further, the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) calculation and MM/GBSA free energy decomposition were used to characterize the binding of OTV and LNV with WT, and R292K mutated N7, revealing the R292K mutation as drug-resistant, facilitated by a decline in binding interaction and a reduction in the dehydration penalty. Due to the broader binding pocket cavity of the smaller K292 mutant residue relative to the wildtype, the drug carboxylate to K292 hydrogen bonding was lost, and the area surrounding the K292 residue was more accessible to water molecules. This implies that drug resistance could be reduced by strengthening the hydrogen bond contacts between N7 inhibitors and altered N7, creating inhibitors that can form a hydrogen bond to the mutant K292, or preserving the closed cavity conformations.


Subject(s)
Influenza A Virus, H10N7 Subtype , Influenza, Human , Humans , Influenza, Human/drug therapy , Antiviral Agents/pharmacology , Neuraminidase/chemistry , Drug Resistance, Viral/genetics , Oseltamivir/pharmacology , Oseltamivir/chemistry , Oseltamivir/metabolism , Mutation , Molecular Dynamics Simulation , Enzyme Inhibitors/pharmacology
4.
J Enzyme Inhib Med Chem ; 38(1): 2277135, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37955306

ABSTRACT

Our previous studies have shown that the introduction of structurally diverse benzyl side chains at the C5-NH2 position of oseltamivir to occupy 150-cavity contributes to the binding affinity with neuraminidase and anti-influenza activity. To obtain broad-spectrum neuraminidase inhibitors, we designed and synthesised a series of novel oseltamivir derivatives bearing different N-heterocycles substituents that have been proved to induce opening of the 150-loop of group-2 neuraminidases. Among them, compound 6k bearing 4-((r)-2-methylpyrrolidin-1-yl) benzyl group exhibited antiviral activities similar to or weaker than those of oseltamivir carboxylate against H1N1, H3N2, H5N1, H5N6 and H5N1-H274Y mutant neuraminidases. More encouragingly, 6k displayed nearly 3-fold activity enhancement against H3N2 virus over oseltamivir carboxylate and 2-fold activity enhancement over zanamivir. Molecular docking studies provided insights into the explanation of its broad-spectrum potency against wild-type neuraminidases. Overall, as a promising lead compound, 6k deserves further optimisation by fully considering the ligand induced flexibility of the 150-loop.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Oseltamivir/pharmacology , Oseltamivir/chemistry , Neuraminidase , Molecular Docking Simulation , Influenza A Virus, H5N1 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/metabolism , Glycoside Hydrolases
5.
Chem Biodivers ; 20(7): e202201077, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37377353

ABSTRACT

Antiviral resistance has turned into a world concern nowadays. Influenza A H1N1 emerged as a problem at the world level due to the neuraminidase (NA) mutations. The NA mutants conferred resistance to oseltamivir and zanamivir. Several efforts were conducted to develop better anti-influenza A H1N1 drugs. Our research group combined in silico methods to create a compound derived from oseltamivir to be tested in vitro against influenza A H1N1. Here we show the results of a new compound derived from oseltamivir but with specific chemical modifications, with significant affinity either on NA (in silico and in vitro assays) or HA (in silico) from influenza A H1N1 strain. We include docking and molecular dynamics (MD) simulations of the oseltamivir derivative at the binding site onto NA and HA of influenza A H1N1. Additionally, the biological experimental results show that oseltamivir derivative decreases the lytic-plaque formation on viral susceptibility assays, and it does not show cytotoxicity. Finally, oseltamivir derivative assayed on viral NA showed a concentration-dependent inhibition behavior at nM, depicting a high affinity of the compound for the enzyme, corroborated with the MD simulations results, placing our designed oseltamivir derivative as a potential antiviral against influenza A H1N1.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Oseltamivir/pharmacology , Oseltamivir/chemistry , Oseltamivir/therapeutic use , Influenza A Virus, H1N1 Subtype/genetics , Hemagglutinins/pharmacology , Hemagglutinins/therapeutic use , Neuraminidase/genetics , Antiviral Agents/chemistry , Influenza, Human/drug therapy , Drug Resistance, Viral/genetics , Enzyme Inhibitors/pharmacology
6.
Eur J Med Chem ; 252: 115275, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36931117

ABSTRACT

To yield potent neuraminidase inhibitors with improved drug resistance and favorable drug-like properties, two series of novel oseltamivir derivatives targeting the 150-cavity of neuraminidase were designed, synthesized, and biologically evaluated. Among the synthesized compounds, the most potent compound 43b bearing 3-floro-4-cyclopentenylphenzyl moiety exhibited weaker or slightly improved inhibitory activity against wild-type neuraminidases (NAs) of H1N1, H5N1, and H5N8 compared to oseltamivir carboxylate (OSC). Encouragingly, 43b displayed 62.70- and 5.03-fold more potent activity than OSC against mutant NAs of H5N1-H274Y and H1N1-H274Y, respectively. In cellular antiviral assays, 43b exerted equivalent or more potent activities against H1N1, H5N1, and H5N8 compared to OSC with no significant cytotoxicity up to 200 µM. Notably, 43b displayed potent antiviral efficacy in the embryonated egg model, in which achieved a protective effect against H5N1 and H5N8 similar to OSC. Molecular docking studies were implemented to reveal the binding mode of 43b in the binding pocket. Moreover, 43b possessed improved physicochemical properties and ADMET properties compared to OSC by in silico prediction. Taken together, 43b appeared to be a promising lead compound for further investigation.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Oseltamivir/chemistry , Neuraminidase , Molecular Docking Simulation , Structure-Activity Relationship , Antiviral Agents/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Glycoside Hydrolases/metabolism , Guanidines/pharmacology , Drug Resistance, Viral
7.
J Biomol Struct Dyn ; 41(20): 10798-10812, 2023 12.
Article in English | MEDLINE | ID: mdl-36541127

ABSTRACT

Influenza virus remains a major public health challenge due to its high morbidity and mortality and seasonal surge. Although antiviral drugs against the influenza virus are widely used as a first-line defense, the virus undergoes rapid genetic changes, resulting in the emergence of drug-resistant strains. Thus, new antiviral drugs that can outwit resistant strains are of significant importance. Herein, we used deep reinforcement learning (RL) algorithm to design new chemical entities (NCEs) that are able to bind to the native and H275Y mutant (oseltamivir-resistant) neuraminidases (NAs) of influenza A virus with better binding energy than oseltamivir. We generated more than 66211 NCEs, which were prioritized based on the filtering rules, structural alerts, and synthetic accessibility. Then, 18 NCEs with better MM/PBSA scores than oseltamivir were further analyzed in molecular dynamics (MD) simulations conducted for 100 ns. The MD experiments showed that 8 NCEs formed very stable complexes with the binding pocket of both native and H275Y mutant NAs of H1N1. Furthermore, most NCEs demonstrated much better binding affinity to group 2 (N2, N3, and N9) and influenza B virus NAs than oseltamivir. Although all 8 NCEs have non-sialic acid-like structures, they showed a similar binding mode as oseltamivir, indicating that it is possible to find new scaffolds with better binding and antiviral properties than sialic acid-like inhibitors. In conclusion, we have designed potential compounds as antiviral candidates for further synthesis and testing against wild and mutant influenza virus.Communicated by Ramaswamy H. Sarma.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A virus , Influenza, Human , Humans , Oseltamivir/chemistry , Antiviral Agents/chemistry , Influenza A virus/genetics , Influenza A Virus, H1N1 Subtype/genetics , Drug Resistance, Viral/genetics , Neuraminidase/chemistry
8.
J Mass Spectrom ; 57(12): e4899, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36517208

ABSTRACT

Oseltamivir phosphate is widely used to treat and prevent influenza, and is available in the form of capsules, powder for oral suspension, pediatric solutions, and granules. Because of the amino group, oseltamivir is easy to react with the excipients of the formulation to generate drug-excipient interaction impurities. In this research, two degradation products in a commercial oseltamivir phosphate powder for oral suspension due to interaction between API and citrate were investigated. They were characterized to be 3-((-6-acetamido-3-(ethoxycarbonyl)-5-(pentan-3-yloxy)cyclohex-3-en-1-yl)carbamoyl)-3-hydroxypentanedioic acid and 2-(2-((-6-acetamido-3-(ethoxycarbonyl)-5-(pentan-3-yloxy)cyclohex-3-en-1-yl)amino)-2-oxoethyl)-2-hydroxysuccinic acid by MS and NMR, respectively. Furthermore, the formation mechanisms of these impurities were verified, and the method of analysis of covariance was used to assess the rate of impurities' degradation. HIGHLIGHTS: Two excipient interaction degradation products in commercial oseltamivir phosphate powder for oral suspension were studied and elucidated in detail via LC-MS/MS and NMR. The incompatibility risk of pH conditioners such as citrate and citric acid with formulations that contain an amino group was disclosed in this article. Analysis of covariance was demonstrated to assess the impact of various formulations and preparation techniques on the rate of impurity degradation.


Subject(s)
Excipients , Oseltamivir , Humans , Child , Oseltamivir/chemistry , Excipients/chemistry , Powders , Chromatography, Liquid , Tandem Mass Spectrometry , Drug Contamination , Phosphates , Citrates
9.
Molecules ; 27(19)2022 Sep 29.
Article in English | MEDLINE | ID: mdl-36234966

ABSTRACT

To address drug resistance to influenza virus neuraminidase inhibitors (NAIs), a series of novel boron-containing N-substituted oseltamivir derivatives were designed and synthesized to target the 150-cavity of neuraminidase (NA). In NA inhibitory assays, it was found that most of the new compounds exhibited moderate inhibitory potency against the wild-type NAs. Among them, compound 2c bearing 4-(3-boronic acid benzyloxy)benzyl group displayed weaker or slightly improved activities against group-1 NAs (H1N1, H5N1, H5N8 and H5N1-H274Y) compared to that of oseltamivir carboxylate (OSC). Encouragingly, 2c showed 4.6 times greater activity than OSC toward H5N1-H274Y NA. Moreover, 2c exerted equivalent or more potent antiviral activities than OSC against H1N1, H5N1 and H5N8. Additionally, 2c demonstrated low cytotoxicity in vitro and no acute toxicity at the dose of 1000 mg/kg in mice. Molecular docking of 2c was employed to provide a possible explanation for the improved anti-H274Y NA activity, which may be due to the formation of key additional hydrogen bonds with surrounding amino acid residues, such as Arg152, Gln136 and Val149. Taken together, 2c appeared to be a promising lead compound for further optimization.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Influenza A virus , Amino Acids/pharmacology , Animals , Antiviral Agents/chemistry , Boron/pharmacology , Boronic Acids/pharmacology , Drug Resistance, Viral , Enzyme Inhibitors/pharmacology , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A virus/metabolism , Mice , Molecular Docking Simulation , Neuraminidase , Oseltamivir/analogs & derivatives , Oseltamivir/chemistry
10.
Eur J Med Chem ; 243: 114711, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36055001

ABSTRACT

Influenza with a tendency to cause pandemic and epidemic is an infectious disease with a high of morbidity and mortality. Neuraminidase (NA) inhibitors are proved to prevent and treat influenza. Among the four Neuraminidase inhibitors (NAIs) licensed, oseltamivir is most commonly used. With the extensive usage, several variants containing mutant NAs especially H274Y point mutation exhibit reduced susceptibility. In this review, we covered the current drugs available for influenza, the analysis of active site of NA, the mutant types of NAs and the molecular mechanism of drug resistance brought by H274Y mutant NAs. For recovering the susceptibility to oseltamivir, many series of oseltamivir analogues were designed. We present the details of the strategies of strengthening the interactions with S2 via introducing strong basic fragment, targeting additional subpockets and making full use of Zone X by modifying 3-pentyl of OC. PROTAC targeting NA and combination therapies are also introduced. Further, the advantages and disadvantages of these methods are also discussed.


Subject(s)
Influenza, Human , Oseltamivir , Humans , Oseltamivir/pharmacology , Oseltamivir/chemistry , Neuraminidase/genetics , Neuraminidase/chemistry , Zanamivir/pharmacology , Mutation , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Glycoside Hydrolases , Drug Resistance, Viral
11.
J Med Chem ; 65(17): 11550-11573, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35939763

ABSTRACT

With our continuous endeavors in seeking neuraminidase (NA) inhibitors, we reported herein three series of novel oseltamivir amino derivatives with the goal of exploring the druggable chemical space inside the 150-cavity of influenza virus NAs. Among them, around half of the compounds in series C were demonstrated to be better inhibitors against both wild-type and oseltamivir-resistant group-1 NAs than oseltamivir carboxylate (OSC). Notably, compounds 12d, 12e, 15e, and 15i showed more potent or equipotent antiviral activity against H1N1, H5N1, and H5N8 viruses compared to OSC in cellular assays. Furthermore, compounds 12e and 15e exhibited high metabolic stability in human liver microsomes (HLMs) and low inhibitory effect on main cytochrome P450 (CYP) enzymes, as well as low acute/subacute toxicity and certain antiviral efficacy in vivo. Also, pharmacokinetic (PK) and molecular docking studies were performed. Overall, 12e and 15e possess great potential to serve as anti-influenza candidates and are worthy of further investigation.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza A Virus, H5N1 Subtype , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Resistance, Viral , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Guanidines/pharmacology , Humans , Molecular Docking Simulation , Neuraminidase , Oseltamivir/chemistry , Structure-Activity Relationship
12.
Molecules ; 27(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35889251

ABSTRACT

The use of vaccinations and antiviral medications have gained popularity in the therapeutic management of avian influenza H7N9 virus lately. Antiviral medicines are more popular due to being readily available. The presence of the neuraminidase protein in the avian influenza H7N9 virus and its critical role in the cleavage of sialic acid have made it a target drug in the development of influenza virus drugs. Generally, the neuraminidase proteins have common conserved amino acid residues and any mutation that occurs around or within these conserved residues affects the susceptibility and replicability of the influenza H7N9 virus. Herein, we investigated the interatomic and intermolecular dynamic impacts of the experimentally reported E119V mutation on the oseltamivir resistance of the influenza H7N9 virus. We extensively employed molecular dynamic (MD) simulations and subsequent post-MD analyses to investigate the binding mechanisms of oseltamivir-neuraminidase wildtype and E119V mutant complexes. The results revealed that the oseltamivir-wildtype complex was more thermodynamically stable than the oseltamivir-E119V mutant complex. Oseltamivir exhibited a greater binding affinity for wildtype (-15.46 ± 0.23 kcal/mol) relative to the E119V mutant (-11.72 ± 0.21 kcal/mol). The decrease in binding affinity (-3.74 kcal/mol) was consistent with RMSD, RMSF, SASA, PCA, and hydrogen bonding profiles, confirming that the E119V mutation conferred lower conformational stability and weaker protein-ligand interactions. The findings of this oseltamivir-E119V mutation may further assist in the design of compounds to overcome E119V mutation in the treatment of influenza H7N9 virus patients.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Antiviral Agents/chemistry , Drug Resistance, Viral/genetics , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza, Human/drug therapy , Mutation , Neuraminidase/chemistry , Neuraminidase/genetics , Oseltamivir/chemistry , Oseltamivir/pharmacology
13.
PLoS Comput Biol ; 18(7): e1010343, 2022 07.
Article in English | MEDLINE | ID: mdl-35901128

ABSTRACT

Oseltamivir is a widely used influenza virus neuraminidase (NA) inhibitor that prevents the release of new virus particles from host cells. However, oseltamivir-resistant strains have emerged, but effective drugs against them have not yet been developed. Elucidating the binding mechanisms between NA and oseltamivir may provide valuable information for the design of new drugs against NA mutants resistant to oseltamivir. Here, we conducted large-scale (353.4 µs) free-binding molecular dynamics simulations, together with a Markov State Model and an importance-sampling algorithm, to reveal the binding process of oseltamivir and NA. Ten metastable states and five major binding pathways were identified that validated and complemented previously discovered binding pathways, including the hypothesis that oseltamivir can be transferred from the secondary sialic acid binding site to the catalytic site. The discovery of multiple new metastable states, especially the stable bound state containing a water-mediated hydrogen bond between Arg118 and oseltamivir, may provide new insights into the improvement of NA inhibitors. We anticipated the findings presented here will facilitate the development of drugs capable of combating NA mutations.


Subject(s)
Influenza, Human , Oseltamivir , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Drug Resistance, Viral/genetics , Enzyme Inhibitors/chemistry , Humans , Neuraminidase/chemistry , Oseltamivir/chemistry , Oseltamivir/metabolism , Oseltamivir/pharmacology
14.
Microvasc Res ; 139: 104251, 2022 01.
Article in English | MEDLINE | ID: mdl-34520775

ABSTRACT

The target of the current investigation was the delivery of oseltamivir phosphate (OSE) into the lung adenocarcinoma tissues by means of designing nanosized, non-toxic and biocompatible pegylated Eudragit based NPs and investigating their anticancer and antiangiogenic activity. The rationale for this strategy is to provide a novel perspective to cancer treatment with OSE loaded pegylated ERS NPs under favor of smaller particle size, biocompatible feature, cationic characteristic, examining their selective effectiveness on lung cell lines (A549 lung cancer cell line and CCD-19Lu normal cell line) and examining antiangiogenic activity by in vivo CAM analysis. For this purpose, OSE encapsulated pegylated ERS based NPs were developed and investigated for zeta potential, particle size, encapsulation efficiency, morphology, DSC, FT-IR, 1H NMR analyses. In vitro release, cytotoxicity, determination apoptotic pathways and in vivo CAM assay were carried out. Considering characterizations, NPs showed smaller particle size, cationic zeta potential, relatively higher EE%, nearly spherical shape, amorphous matrix formation and prolonged release pattern (Peppas-Sahlin and Weibull model with Fickian and non-Fickian release mechanisms). Flow cytometry was used to assess the apoptotic pathways using the Annexin V-FITC/PI staining assay, FITC Active Caspase-3 staining assay, and mitochondrial membrane potential detection tests. Activations on caspase-3 pathways made us think that OSE loaded pegylated ERS NPs triggered to apoptosis using intrinsic pathway. As regards to the in vivo studies, OSE loaded pegylated ERS based NPs demonstrated strong and moderate antiangiogenic activity for ERS-OSE 2 and ERS-OSE 3, respectively. With its cationic character, smaller particle size, relative superior EE%, homogenous amorphous polymeric matrix constitution indicated using solid state tests, prolonged release manner, highly selective to the human lung adenocarcinoma cell lines, could trigger apoptosis intrinsically and effectively, possess good in vivo antiangiogenic activity, ERS-OSE 2 formulation is chosen as a promising candidate and a potent drug delivery system to treat lung cancer.


Subject(s)
Acrylic Resins/chemistry , Angiogenesis Inhibitors/pharmacology , Apoptosis/drug effects , Chorioallantoic Membrane/blood supply , Drug Carriers , Lung Neoplasms/drug therapy , Nanoparticles , Neovascularization, Pathologic , Neovascularization, Physiologic/drug effects , Oseltamivir/pharmacology , Polyethylene Glycols/chemistry , A549 Cells , Animals , Chick Embryo , Delayed-Action Preparations , Drug Compounding , Drug Liberation , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Nanotechnology , Oseltamivir/chemistry
15.
J Mol Model ; 27(12): 357, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34812947

ABSTRACT

The synthetic cyclohexenecarboxylate ester antiviral Oseltamivir (O) have been theoretically studied by B3LYP/6-311 + + G** calculations to estimate its reactivity and behaviour in gas and aqueous media. The most stable structure obtained in above media is consistent with that reported experimental for Oseltamivir phosphate. The solvation energy value of (O) in aqueous media is between the predicted for antiviral Idoxuridine and Ribavirin. Besides, (O) containing a NH2 group and NH group reveals lower solvation energy compared with other antiviral agents with an NH2 group, such as Ribavirin, Cidofovir, and Brincidofovir. Atomic charges on N and O atoms in acceptors and donor groups reveal different behaviours in both media, while the natural bond orbital (NBO) studies show a raised stability of (O) in aqueous solution. This latter resulted is in concordance with the lower reactivity evidenced in water. Frontier orbital studies have revealed that (O) in gas phase has a very similar gap value to antiviral Cidofovir used against the ebola disease, while Chloroquine in the two media are more reactive than (O). This study will allow to identify (O) by using vibrational spectroscopy because the 144 vibration modes expected have been assigned using the harmonic force fields calculated from the scaled mechanical force field methodology (SQMFF). Scaled force constants for (O) in the mentioned media are also reported for first time. Due to hydration of the C = O and NH2 groups by solvent molecules, the calculations in solution produce variations not only in the IR wavenumbers bands, but also in their intensities.


Subject(s)
Antiviral Agents/chemistry , Oseltamivir/chemistry , Density Functional Theory , Gases/chemistry , Models, Chemical , Molecular Conformation , Solutions/chemistry , Static Electricity , Water/chemistry
16.
J Med Chem ; 64(24): 17992-18009, 2021 12 23.
Article in English | MEDLINE | ID: mdl-34735766

ABSTRACT

Our previous efforts have proved that modifications targeting the 150-cavity of influenza neuraminidase can achieve more potent and more selective inhibitors. In this work, four subseries of C5-NH2 modified oseltamivir derivatives were designed and synthesized to explore every region inside the 150-cavity. Among them, compound 23d was exceptionally potent against the whole panel of Group-1 NAs with IC50 values ranging from 0.26 to 0.73 nM, being 15-53 times better than oseltamivir carboxylate (OSC) and 7-11 times better than zanamivir. In cellular assays, 23d showed more potent or equipotent antiviral activities against corresponding virus strains compared to OSC with no cytotoxicity. Furthermore, 23d exhibited high metabolic stability in human liver microsomes (HLM) and low inhibitory effect on main cytochrome P450 enzymes. Notably, 23d displayed favorable druggability in vivo and potent antiviral efficacy in the embryonated egg model and mice model. Overall, 23d appears to be a promising candidate for the treatment of influenza virus infection.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H5N1 Subtype/drug effects , Neuraminidase/antagonists & inhibitors , Oseltamivir/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Biological Availability , Chick Embryo , Computer Simulation , Half-Life , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Oseltamivir/chemistry , Oseltamivir/pharmacokinetics , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
17.
Nanotechnology ; 32(48)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34375967

ABSTRACT

Coronavirus disease 2019 (COVID-19) is today's most serious epidemic disease threatening the human race. The initial therapeutic approach of SARS-CoV-2 disease is based upon the binding the receptor-binding site of the spike protein to the host cell's ACE-2 receptor on the plasma membrane. In this study, it is aimed to develop a biocompatible and biodegradable polymeric drug delivery system that is targeted to the relevant receptor binding site and provides controlled drug release. Oseltamivir phosphate (OP) is an orally administered antiviral prodrug for primary therapy of the disease in biochemically activated carboxylate form (oseltamivir carboxylate OC). In the presented study, model drug OP loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) targeted with spike-binding peptide 1 (SBP1) of SARS-CoV-2 were designed to be used as an efficient and prolonged released antiviral drug delivery system. RY, EE, and DL values of the OP-loaded NPs produced by the solvent evaporation method were calculated to be 59.3%, 61.4%, and 26.9%, respectively. The particle size of OP-loaded NPs and OP-loaded NPs targeted with SBP1 peptide were 162.0 ± 11.0 and 226.9 ± 21.4 nm, respectively. While the zeta potential of the produced OP-loaded NPs was achieved negatively -23.9 ± 1.21 mV), the result of the modification with SBP1 peptide this value approached zero as -4.59 ± 0.728 mV. Morphological features of the OP-loaded NPs were evaluated using FEG-SEM. The further characterization and surface modification of the NPs were analyzed by FT-IR.In-vitrorelease studies of NPs showed that sustained release of OP occurred for two months that fitting the Higuchi kinetic model. By evaluating these outputs, it was reported that surface modification of OP-loaded NPs was significantly effective on characteristics such as size, zeta potential values, surface functionality, and release behavior. The therapeutic model drug-loaded polymeric formulation targeted with a specific peptide may serve as an alternative to more effective and controlled release pharmaceuticals in the treatment of COVID-19 upon an extensive investigation.


Subject(s)
COVID-19 Drug Treatment , Nanoparticles/chemistry , Oseltamivir/chemistry , Peptides/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Humans , Oseltamivir/therapeutic use
18.
Eur J Med Chem ; 221: 113567, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34082224

ABSTRACT

Neuraminidase (NA) inhibitors play a prime role in treating influenza. However, a variety of viruses containing mutant NAs have developed severe drug resistance towards NA inhibitors, so it is of crucial significance to solve this problem. Encouraged by urea-containing compound 12 disclosed by our lab, we designed a series of oseltamivir derivatives bearing hydrazide fragment for targeting the 150 cavity. Among the synthesized compounds, compound 17a showed 8.77-fold, 4.12-fold, 203-fold and 6.23-fold more potent activity than oseltamivir carboxylate against NAs from H5N1, H1N1, H5N1-H274Y, H1N1-H274Y, respectively. Meanwhile, the best compound 17a exhibited satisfactory metabolic stability in vitro. This study offers an important reference for the structural optimization of oseltamivir aiming at potent inhibition against H274Y mutant of NAs.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Hydrazines/pharmacology , Influenza A virus/drug effects , Neuraminidase/antagonists & inhibitors , Oseltamivir/pharmacology , Viral Proteins/antagonists & inhibitors , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Influenza A virus/enzymology , Microbial Sensitivity Tests , Molecular Structure , Mutation , Neuraminidase/genetics , Neuraminidase/metabolism , Oseltamivir/chemical synthesis , Oseltamivir/chemistry , Structure-Activity Relationship , Viral Proteins/genetics , Viral Proteins/metabolism
19.
Carbohydr Polym ; 260: 117703, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33712119

ABSTRACT

Present research work was aimed at masking the bitter taste of anti- viral drug Oseltamivir phosphate (Ost) by complexing it with pea starch maltodextrin- Kleptose Linecaps® (Mld). The Ost groups involved in triggering the bitter sensation were identified by computationally assessing its interaction with human bitter taste receptor hTAS2R 38. A series of exhaustive molecular dynamics (MD) simulation was run using Schrodinger® suite to understand the type of interaction of Ost with Mld. Experimentally, complexes of Ost with Mld were realized by solution method. The complexes were characterized using differential scanning colorimetry (DSC), fourier transform-infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD), hot stage microscopy (HSM), scanning electron microscopy (SEM), proton NMR (1H-NMR) and Carbon-13 nuclear magnetic resonance (13C-NMR). Ost-oral dispersible mini tablets (ODMT) were prepared by direct compression and optimised using mixture designs. Finally, bitter taste perception of Ost-ODMT was evaluated in healthy human volunteers of either sex. Computational assessment, involving interaction of Ost with bitter receptor, predicted the involvement of free amino group of Ost in triggering the bitter response whereas, MD simulation predicted the formation of stable complex between Ost and double helical confirmation of Mld. Different characterization techniques confirmed the findings of MD simulation. Results from the taste assessment in human volunteers revealed a significant reduction in bitter taste of prepared Ost-ODMT.


Subject(s)
Drug Compounding , Oseltamivir/chemistry , Polysaccharides/chemistry , Aversive Agents/chemistry , Aversive Agents/pharmacology , Female , Humans , Influenza, Human/drug therapy , Male , Molecular Dynamics Simulation , Oseltamivir/therapeutic use , Solubility , Taste Perception/drug effects , Young Adult
20.
Eur J Med Chem ; 212: 113097, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33385836

ABSTRACT

Encouraged by our earlier discovery of N1-selective inhibitors, the 150-cavity of influenza virus neuraminidases (NAs) could be further exploited to yield more potent oseltamivir derivatives. Herein, we report the design, synthesis and biological evaluation of a series of novel oseltamivir derivatives via the structural modifications at C5-NH2 of oseltamivir targeting 150-cavity. Among them, compound 5c bearing 4-(3-methoxybenzyloxy)benzyl group exhibited the most potent activity, which was lower or modestly improved activities than oseltamivir carboxylate (OSC) against N1 (H1N1), N1 (H5N1) and N1 (H5N1-H274Y). Specifically, there was 30-fold loss of activity against the wild-type strain H1N1. However, 5c displayed 4.85-fold more potent activity than OSC against H5N1-H274Y NA. Also, 5c demonstrated low cytotoxicity in vitro and no acute toxicity in mice. Molecular docking studies provided insights into the high potency of 5c against N1 and N1-H274Y mutant NAs. Besides, the in silico prediction of physicochemical properties and CYP enzymatic inhibitory ability of representative compounds were conducted to evaluate their drug-like properties.


Subject(s)
Antiviral Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Neuraminidase/antagonists & inhibitors , Orthomyxoviridae/drug effects , Oseltamivir/pharmacology , Animals , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Female , Male , Mice , Mice, Inbred Strains , Microbial Sensitivity Tests , Molecular Structure , Neuraminidase/genetics , Neuraminidase/metabolism , Orthomyxoviridae/enzymology , Oseltamivir/analogs & derivatives , Oseltamivir/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...